• Home
  • News
  • Team
  • Research
  • Lab
  • Outreach
  • Publications
tour

Publications There is no greater agony than bearing an untold story inside you

-Maya Angelou

since joining asu

Book Chapters:[2] C.M. Hamm, and C.S. Birkel. MAX Phases and MXenes, in Inorganic Materials Chemistry; Seshadri, R.; Cussen, S.; in Comprehensive Inorganic Chemistry III; Reedijk, J., Poeppelmeier, K. R., Eds.;, Vol. 5, pp 278-289. Oxford: Elsevier, 2023 DOI: 10.1016/B978-0-12-823144-9.00076-5[1] C.S. Birkel. Synthesis of inorganic energy materials, in Frontiers of Science and Technology, De Gruyter 2021 DOI: 10.1515/9783110584455-010
Nachrichten aus der Chemie Artikel: [3] N. Kubitza, C.S. Birkel, Zwischen flüssig und fest: Synthese ternärer Carbide und Nitride, Blickpunkt Anorganik, 2025, DOI: 10.1002/nadc.20254147527 [2] N. Kubitza, C.S. Birkel, Zwischen Keramik und Metall, Blickpunkt Anorganik, 2024, DOI: 10.1002/nadc.20244142068[1] N. Kubitza, C.S. Birkel, Festkörpersynthese im Mikrowellenofen, Blickpunkt Anorganik, 2024, DOI: 10.1002/nadc.20244142064
Journal Articles and Reviews: [57] R.M. Snyder, S. Sankar, P. Bhatt, A.A. Riaz, P.K. Thakur, T.-L. Lee, A. Regoutz, S. Susarla, C.S. Birkel, High-yield Delamination of Hydrothermally-Etched V2CTx, Inorg. Chem. 2025, 64, 10, 4761–4765, DOI: 10.1021/acs.inorgchem.4c04546 [56] R.M. Snyder, T. Nguyen, P. Bhatt, A.A. Riaz, P.K. Thakur, T.-L. Lee, A. Regoutz, A.K. Jones, C.S. Birkel, (V1–yMoy)2CTx MXene Nanosheets as Electrocatalysts for Hydrogen Evolution, ACS Appl. Nano Mater. 2025, 8, 2, 1137-1146, DOI: 10.1021/acsanm.4c06029 [55] J. Jamboretz, and C.S. Birkel, Raman Thermometry for Temperature Assessment of Inorganic Transformations During Microwave Heating, J. Raman Spectr. 2024, 56, 49-56, DOI: 10.1002/jrs.6743 [54] J. Jamboretz, Y. Zhu, R. James*, L. Mu, and C.S. Birkel, The microwave-assisted synthesis of P2 and O3 type NaxCoO2 cathode materials studied by in situ Raman spectroscopy, Chem. Mater. 2024, 36, 16, 8447-8457, DOI: 10.1021/acs.chemmater.4c01551 [53] J. Sinclair, J.P. Siebert, M. Flores*, D. Ciota, D.-K. Seo, and C.S. Birkel, High surface area of carbonaceous Cr2GaC composite microspheres synthesized by sol–gel chemistry, New J. Chem. 2024, 48, 11122-11128, DOI: 10.1039/D4NJ02038C [52] J. Sinclair, M. Flores, A.M. Brugh, T. Rajh, M. Juelsholt, A.A. Riaz, C. Schlüter, A. Regoutz, and C.S. Birkel, In-Depth Analysis of the Species and Transformations during Sol Gel-Assisted V2PC Synthesis, Inorg. Chem. 2024, 63, 23, 10682–10690, DOI: 10.1021/acs.inorgchem.4c01160 [51] N. Kubitza, I. Huck, H. Pazniak, C. Kalha, D. Koch, B. Zhao, P.K. Thakur, T.-L. Lee, A.A. Riaz, W. Donner, H. Zhang, B. Moss, U. Wiedwald, A. Regoutz, and C.S. Birkel, Between carbide and nitride MAX phases: sol–gel assisted synthesis and characterization of the carbonitride phase Cr2GaC1−xNx, J. Mater. Chem. C, 2024, 12, 7552-7561, DOI: 10.1039/D4TC00067F [50] C. Büchner, N. Kubitza, A.M. Malik, J. Jamboretz, A.A. Riaz, Y. Zhu, C. Schlüter, M.R. McCartney, D.J. Smith, A. Regoutz, J. Rohrer, and C.S. Birkel. Chemical Conversions within the Mo–Ga–C System: Layered Solids with Variable Ga Content, Inorg. Chem. 2024, 63, 17, 7725–7734. DOI: 10.1021/acs.inorgchem.4c00107 [49] N. Kubitza, B. Beckmann, S. Jankovic*, K. Skokov, A.A. Riaz, C. Schlüter, A. Regoutz, O. Gutfleisch, and C.S. Birkel. Exploring the Potential of Nitride and Carbonitride MAX Phases: Synthesis, Magnetic and Electrical Transport Properties of V2GeC, V2GeC0.5N0.5, and V2GeN, Chem. Mater. 2024, 36, 3, 1375–1384, DOI: 10.1021/acs.chemmater.3c02510 [48] N. Kubitza, P. Babaei*, U. Wiedwald, and C.S. Birkel. Rapid Sol Gel Synthesis Approach for the Preparation of the Magnetocaloric Antiperovskite Mn3GaC, Chem. Mater. 2023, 35, 21, 9175–9181, DOI: 10.1021/acs.chemmater.3c01905 [47] N. Kubitza, C. Büchner, J. Sinclair, R. Snyder, and C.S. Birkel. Extending the Chemistry of Layered Solids and Nanosheets: Chemistry and Structure of MAX Phases, MAB Phases and MXenes, ChemPlusChem 2023, 8, e202300214, DOI: 10.1002/cplu.202300214 [46] R.M. Snyder, M. Juelsholt, C. Kalha, J. Holm, E. Mansfield, T.-L. Lee, P.K. Thakur, A.A. Riaz, B. Moss, A. Regoutz, and C.S. Birkel. Detailed Analysis of the Synthesis and Structure of MAX Phase (Mo0.75V0.25)5AlC4 and Its MXene Sibling (Mo0.75V0.25)5C4, ACS Nano 2023 17, 13, 12693 - 12705, DOI: 10.1021/acsnano.3c03395 [45] N. Kubitza, R. Xie, I. Tarasov, C. Shen, H. Zhang, U. Wiedwald, and C.S. Birkel. Microwave-assisted synthesis of the new solid-solution (V1−xCrx)2GaC (0 < x < 1), a Pauli paramagnet almost matching the Stoner criterion for x = 0.80, Chem. Mater. 2023 35, 4427–4434, DOI: 10.1021/acs.chemmater.3c00591 [44] A. Reitz, H. Pazniak, C. Shen, H.K. Singh, J. Kumar, N. Kubitza, A. Navrotsky, H. Zhang, U. Wiedwald, and C.S. Birkel. Cr3GeN: A Nitride with Orthorhombic Antiperovskite Structure Chem. Mater. 2022 34, 10304 - 10310, DOI: 10.1021/acs.chemmater.2c01524 [43] J. Jamboretz, A. Reitz, and C.S. Birkel. Development of a Raman spectroscopy system for in situ monitoring of microwave-assisted inorganic transformations J. Raman Spectr. 2022 1 - 9, DOI: 10.1002/jrs.6478 [42] J. Sinclair, J.P. Siebert, M. Juelsholt, S. Chen, H. Zhang, and C.S. Birkel. Sol Gel-Based Synthesis of the Phosphorus-Containing MAX Phase V2PC Inorg. Chem. 2022 61, 16976 - 16980, DOI: 10.1021/acs.inorgchem.2c02880 [41] N. Kubitza, A. Reitz,A. Zieschang, H. Pazniak, B. Albert, C. Kalha, C. Schlüter, A. Regoutz, U. Wiedwald, and C.S. Birkel. From MAX phase carbides to nitrides: Synthesis of V2GaC, V2GaN and the carbonitride V2GaC1−xNx, Inorg. Chem. 2022 61, 10634 - 10641, DOI: 10.1021/acs.inorgchem.2c00200 [40] J.P. Siebert, M. Juelsholt, D. Günzing, H. Wende, K. Ollefs, and C.S. Birkel. Towards a mechanistic understanding of the sol-gel syntheses of ternary carbides, Inorg. Chem. Front 2022 9, 1565 - 1574, DOI: 10.1039/D2QI00053A [39] J.P. Siebert, K. Patakarun*, and C.S. Birkel. Mechanistic Insights into the Nonconventional Sol-Gel Synthesis of MAX Phase M2GeC (M = V, Cr), Inorg. Chem. 2022 61, 3, 1603 - 1610, DOI: 10.1021/acs.inorgchem.1c03415 [38] J.P. Siebert, D. Hajra, S. Tongay, and C.S. Birkel. The synthesis and electrical transport properties of carbon/Cr2GaC MAX phase composite microwires, Nanoscale 2022 14, 744-751, DOI: 10.1039/D1NR06780J [37] J.P. Siebert, M. Flores*, and C.S. Birkel. Shape Control of MAX Phases by Biopolymer Sol Gel Synthesis: Cr2GaC Thick Films, Microspheres, and Hollow Microspheres, ACS Org. Inorg. Au (invited) 2021 2, 59 - 65, DOI: 10.1021/acsorginorgau.1c00022 [36] J.P. Siebert, S. Mallett*, M. Juelsholt, H. Pazniak, U. Wiedwald, K. Page, and C.S. Birkel. Local structure determination and magnetic properties of the Mn-doped MAX phase Cr2GaC, Mater. Chem. Front. 2021 5, 6082-6, DOI: 10.1039/D1QM00454A [35] M.H. Tran, A.M. Malik, M.T. Duerrschnabel, A. Regoutz, P.K. Thakur, T.-L. Lee, D. Perera, L. Molina-Luna, K. Albe, J. Rohrer, and C.S. Birkel. Experimental and theoretical investigation of the chemical exfoliation of Cr-based MAX phase particles, Dalton Trans. 2020 49, 12215-12221, DOI: 10.1039/D0DT01448F [34] M.H. Tran, R. Brilmayer, L. Liu, H. Zhuang, C. Hess, A. Andrieu-Brunsen, and C.S. Birkel. Synthesis of a Smart Hybrid MXene with Switchable Conductivity for Temperature Sensing, ACS Appl. Nano Mater. 2020 3, 4069-4076, DOI: 10.1021/acsanm.0c00118 [33] J.P. Siebert, C.M. Hamm, and C.S. Birkel. Microwave heating and spark plasma sintering as non-conventional synthesis methods to access thermoelectric and magnetic materials, Appl. Phys. Rev. 2019 6, DOI: 10.1063/1.5121442 [32] .P. Siebert, L. Bischoff, M. Lepple, A. Zintler, L. Molina-Luna, U. Wiedwald, and C.S. Birkel. Sol-gel based synthesis and enhanced facile processability of MAX phase Cr2GaC, J. Mater. Chem. C 2019 7, 6034-6040, DOI: 10.1039/C9TC01416K

Prior to asu, publications as pi

[31] M.H. Tran, T. Schäfer*, A. Shahraei, M. Dürrschnabel, L. Molina-Luna, U.I. Kramm, and C.S. Birkel. Adding a new member to the MXene family: Synthesis, structure and electrocatalytic activity for the Hydrogen Evolution Reaction of V4C3Tx, ACS Appl. Energy Mater., 2018 1, 3908-3914, DOI: doi.org/10.1021/acsaem.8b00652 [30] C.S. Birkel, W.G. Zeier, T. Lunkenbein, V. Hlukhyy. Trendberichte Festkörperchemie 2017, Nachrichten aus der Chemie, 2018 66, 240-248, DOI: doi.org/10.1002/nadc.20184071885 [29] C.M. Hamm, M. Dürrschnabel, L. Molina-Luna, R. Salikhov, D. Spoddig, M. Farle, U. Wiedwald, and C.S. Birkel. Structural, magnetic and electrical transport properties of non-conventionally prepared MAX phases V2AlC and (V/Mn)2AlC, Mater. Chem. Front., 2018 2, 483-490, DOI: doi.org/10.1039/C7QM00488E [28] JC.M. Hamm, J.D. Bocarsly, G. Seward, U.I. Kramm, and C.S. Birkel. Non-conventional synthesis and magnetic properties of MAX phases (Cr/Mn)2AlC and (Cr/Fe)2AlC, J. Mater. Chem. C, 2017 5, 5700-5708 (Emerging Investigator Issue) DOI: doi.org/10.1039/C7TC00112F [27] C.M. Hamm, L. Diop, H. Zhang, O. Gutfleisch, and C.S. Birkel. Microwave synthesis and magnetic properties of Laves-type Ti2M3Si (M = Mn, Fe, Co, Ni), Phys. Status Solidi C, 2017 14, 1700027, DOI: doi.org/10.1002/pssc.201700027 [26] C.M. Hamm, T. Schäfer*, H. Zhang, and C.S. Birkel. Non-conventional synthesis of the 413 MAX phase V4AlC3, ZAAC 2016 642, 1397-1401, DOI: doi.org/10.1002/zaac.201600370 [25] C.M. Hamm, D. Gölden, E. Hildebrandt, J. Weischenberg, H. Zhang, L. Alff, and C.S. Birkel. Magnetic properties of the Laves-type phases Ti2Co3Si and Ti2Fe3Si and their solid solution, J. Mater. Chem. C 2016 26, 2755-2761, DOI: doi.org/10.1039/C6TC02043G

Prior to asu, publications as lead and coauthor

[24] L. Bischoff, M. Stephan, C.S. Birkel, C. Litterscheid, A. Dreizler, and B. Albert. Multiscale and luminescent, hollow microspheres for gas phase thermometry, Sci. Rep. 2018 8, 608, DOI: doi.org/10.1038/s41598-017-18942-2 [23] G. Kieslich, U. Burkhardt, C.S. Birkel, I. Veremchuk, J.E. Douglas, M.W. Gaultois, I. Lieberwirth, R. Seshadri, G.D. Stucky, Y. Grin, and W. Tremel. Enhanced thermoelectric properties of the n-type Magneli phase WO2.90: reduced thermal conductivity through microstructure engineering, J. Mater. Chem. A 2014 2, 13492-13497, DOI: doi.org/10.1039/C4TA01395F [22] T. Claudio, D. Bessas, C.S. Birkel, G. Kieslich, M. Panthöfer, I. Sergueev, W. Tremel, R.P. Hermann, Enhanced Debye level in nano Zn1+xSb, FeSb2 and NiSb: nuclear inelastic spectroscopy on 121Sb, Phys. Status Solidi B 2014, 251, 919-921 (Editor’s choice), DOI: doi.org/10.1002/pssb.201350246 [21] Y. Zhang, J.-H. Bahk, J. Lee, C.S. Birkel, M.L. Snedaker, D. Liu, H. Zeng, M. Moskovits, A. Shakouri, G.D. Stucky. Hot Carrier Filtering in Solution Processed Heterostructures: a Paradigm for Improving Thermoelectric Efficiency, Adv. Mater., 2014 26, 2755-2761 DOI: doi.org/10.1002/adma.201304419 [20] J.E. Douglas, C.S. Birkel, N. Verma, V.M. Miller, M-S Miao, G.D. Stucky, T.M. Pollock, R. Seshadri. Phase stability and property evolution of biphasic Ti-Ni-Sn alloys for use in thermoelectric applications, J. Appl. Phys. 2014 115, 043720, DOI: doi.org/10.1063/1.4862955 [19] G. Kieslich, C.S. Birkel, I. Vermenchuk, Y. Grin, W. Tremel. Thermoelectric properties of spark-plasma sintered nanoparticular FeSb2 prepared via a solution chemistry approach, Dalton Trans. 2014 43, 558 – 562, DOI: doi.org/10.1039/C3DT51535D [18] C.S. Birkel, M.L. Snedaker, Y. Zhang, H. Wang, T. Day, Y. Shi, X. Ji, S. Krämer, C.E. Mills*, A. Moosazadeh, Moscoskovits, G.J. Snyder, and G.D. Stucky. Silicon-based thermoelectrics made from a boron-doped silicon dioxide nanocomposite, Chem. Mater. 2013 25, 4867 – 4873, DOI: doi.org/10.1021/cm401990c [17] C.S. Birkel, J.E. Douglas, B.R. Lettiere*, G. Seward, Y. Zhang, T.M. Pollock, R. Seshadri, G.D. Stucky. Influence of Ni nanoparticle addition and spark plasma sintering on the TiNiSn-Ni system: Structure, microstructure, and thermoelectric properties, Solid State Sci. 2013 26, 16 – 22, DOI: doi.org/10.1016/j.solidstatesciences.2013.09.005 [16] G. Kieslich, C.S. Birkel, J.E. Douglas, M. Gaultois, I. Vermenchuk, R.Seshadri, G.D. Stucky, Y. Grin, W. Tremel. SPS-assisted preparation of the Magneli phase WO2.90 for thermoelectric applications, J. Mater. Chem. A 2013 1, 13050 – 13054, DOI: doi.org/10.1039/C3TA12145C [15] G. Kieslich, I. Veremchuk, I. Antonyshyn, W.G. Zeier, C.S. Birkel, K. Weldert, C.P. Heinrich, E. Visnow, M. Panthöfer, U. Burkhardt, Y. Grin, W. Tremel. Using Crystallographic Shear to Reduce Lattice Thermal Conductivity: High Temperature Thermoelectric Characterization of the Spark Plasma Sintered Magneli Phases WO2.90 and WO2.722, Phys. Chem. Chem. Phys. 2013 15, 15399 – 15403, DOI: doi.org/10.1039/C3CP52361F [14] C.S. Birkel, J.E. Douglas, B.R. Lettiere*, G. Seward, Y. Zhang, T.M. Pollock, R. Seshadri, and G.D. Stucky. Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a second full-Heusler phase: Microwave preparation and Spark Plasma Sintering of TiNi1+xSn, Phys. Chem. Chem. Phys. 2013, 15, 6990 – 6997, DOI: doi.org/10.1039/C3CP50918D [13] M.W. Gaultois, P.T. Barton, C.S. Birkel, L.M. Misch, E.E. Rodriguez, G.D. Stucky, and R. Seshadri. Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7, J. Phys.: Condens. Matter 2013, 25, 186004, DOI: 10.1088/0953-8984/25/18/186004 [12] J.E. Douglas, C.S. Birkel, M.-S. Miao, C.J. Torbet, G.D. Stucky, T.M. Pollock, and R. Seshadri. Enhanced thermoelectric properties of bulk TiNiSn via formation of a TiNi2Sn second phase, Appl. Phys. Lett. 2012, 101, 183902, DOI: doi.org/10.1063/1.4765358 [11] Y. Zhang, T. Day, M.L. Snedaker, H. Wang, S. Kraemer, C.S. Birkel, X. Ji, D. Liu, G.J. Snyder, and G.D. Stucky. A Mesoporous Anisotropic n-Type Bi2Te3 Monolith with Low Thermal Conductivity as an Efficient Thermoelectric Material, Adv. Mater. 2012, 24 (37), 5065 – 5070, DOI: doi.org/10.1002/adma.201201974 [10] C.S. Birkel, W.G. Zeier, J.E. Douglas, B.R. Lettiere*, C.E. Mills*, G. Seward, A. Birkel, M.L. Snedaker, Y. Zhang, G.J. Snyder, T.M. Pollock, R. Seshadri, and G.D. Stucky. Rapid microwave preparation of thermoelectric TiNiSn and TiCoSb half-Heusler compounds. Chem. Mater. 2012, 24 (13), 2558 – 2565, DOI: doi.org/10.1021/cm3011343 [9] Q.-C. Sun, C.S. Birkel*, J. Cao, W. Tremel, and J.L. Musfeldt. Spectroscopic signature of the superparamagnetic transition and surface spin disorder in CoFe2O4 nanoparticles. ACS Nano 2012, 6 (6), 4876 – 4883, DOI: doi.org/10.1021/nn301276q [8] A. Birkel, L.E. Darago*, A. Morrison, L. Lory*, N.C. George, A.A. Mikhailovsky, C.S. Birkel, and R. Seshadri. Microwave assisted preparation of Eu2+-doped Akermanite Ca2MgSi2O7. Solid State Sci. 2012, 14 (6), 739 – 745, DOI: doi.org/10.1016/j.solidstatesciences.2012.03.014 [7] A. Birkel, K.A. Denault, N.C. George, C.E. Doll*, B. Henry*, A.A. Mikhailovsky, C.S. Birkel, B.-C. Hong, and R. Seshadri. Rapid microwave preparation of Ce3+-substituted garnet phosphors for solid state white lighting. Chem. Mater. 2012, 24 (6), 1198 – 1204, DOI: doi.org/10.1021/cm3000238 [6] Y. Zhang, M.L. Snedaker, C.S. Birkel, M. Syed, X. Ji, Y. Shi, D. Liu, X. Liu, M. Moskovits, G.D. Stucky. Silver Based Intermetallic Heterostructures in Sb2Te3 Thick Films with Enhanced Thermoelectric Power Factors, Nano Lett. 2012, 12 (2), 1075 – 1080, DOI: doi.org/10.1021/nl204346g [5] C.S. Birkel, G. Kieslich*, D. Bessas, T. Claudio, R. Branscheid, U. Kolb, M. Panthöfer, R.P. Hermann, and W. Tremel. Wet Chemical Synthesis and a Combined X-ray and Mössbauer Study of the Formation of FeSb2 Nanoparticles, Inorg. Chem. 2011, 50 (22), 11807 – 11812, DOI: doi.org/10.1021/ic201940r [4] G. Kieslich*, C.S. Birkel, A. Stewart, U. Kolb, and W. Tremel. Solution Synthesis of Nanoparticular Binary Transition Metal Antimonides. Inorg. Chem. 2011, 50 (15), 6938 – 6943, DOI: doi.org/10.1021/ic200074z [3] C.S. Birkel, T. Claudio, M. Panthöfer, A. Birkel, D. Koll, G. Kieslich*, J. Schmidt, R. Hermann, and W. Tremel. Properties of Spark Plasma Sintered Nanostructured Zn1+xSb, Phys. Status Solidi A 2011, 208 (8), 1913 – 1919, DOI: doi.org/10.1002/pssa.201026665 [2] C.S. Birkel, E. Mugnaioli, T. Gorelik, U. Kolb, M. Panthöfer, and W. Tremel. Solution Synthesis of a New Thermoelectric Zn1+xSb Nanophase and Its Structure Determination Using Automated Electron Diffraction Tomography. J. Am. Chem. Soc. 2010, 132 (28), 9881 – 9889, DOI: doi.org/10.1021/ja1035122 [1] K. Page, C.S. Schade*, J. Zhang, P.J. Chupas, K.W. Chapman, T. Proffen, A.K. Cheetham, and R. Seshadri, Preparation and characterization of Pd2Sn nanoparticles. Mater. Res. Bull., 2007, 42 (12), 1969 – 1975, DOI: doi.org/10.1016/j.materresbull.2007.05.010
*Undergraduate student
Contact Info
christina.birkel@asu.edu
1001 S. McAllister Ave. Tempe 85281
Copyright © Christina Birkel. All rights reserved.

We use cookies to enable essential functionality on our website, and analyze website traffic. By clicking Accept you consent to our use of cookies. Read about how we use cookies.

Your Cookie Settings

We use cookies to enable essential functionality on our website, and analyze website traffic. Read about how we use cookies.

Cookie Categories
Essential

These cookies are strictly necessary to provide you with services available through our websites. You cannot refuse these cookies without impacting how our websites function. You can block or delete them by changing your browser settings, as described under the heading "Managing cookies" in the Privacy and Cookies Policy.

Analytics

These cookies collect information that is used in aggregate form to help us understand how our websites are being used or how effective our marketing campaigns are.